A Systematic Study of Correlation between Surface Roughness and Microwave Effective Conductivity of Copper Foils for Ultra-Low-Loss Applications

Malgorzata Celuch¹, Thomas Devahif², Tomasz Nalecz¹, Janusz Rudnicki¹ ¹QWED Sp. z o.o., Poland

²Circuit Foil Luxembourg sarl, Luxembourg

Outline

- 1. Motivation.
- 2. Measurements.
- 3. Results.
- 4. Conclusions.

Motivation

- Need for ultra-low-loss materials in high frequency electromagnetic design and techniques allowing precise determination of such materials.
- Developing microwave and millimetre-wave resonators for stand-alone copper foils samples measurements as an alternative for time-consuming and cumbersome tests of circuit manufactured on a PCB.
- Better understanding of the impact of individual processes in the production of copper foils.

Measurements

Samples

- 24 types of copper foils by CFL.
- Each type is different combination of base foil and treatment and also delivered in two thicknesses 35 μm and 70 μm .
- Roughness parameters were measured for each sample by CFL.

Measurements

Ruby Dielectric Resonator (RuDD)

- Foil loss is measured with RuDD operating at 13 GHz .
- RuDD is connected to VNA (Keysight Streamline P5008B), which extract the 3dB bandwith at the resonance.
- A dedicated application convert this to the Q-

factor and then calculates the effective conductivity.

Roughness parameters (contact stylus profilometre)

Maximum Height (Rz)

Arithmetical Mean deviation (Ra)

03.07.2024

Roughness parameters (noncontact laser interferometry)

Maximum Height (Sz)

Arithmetical Mean Height (Sa)

Olympus*

Olympus*

* https://www.olympus-ims.com/en/metrology/surface-roughness-measurement-portal/parameters/#!cms[focus]=cmsContent14708

7

Roughness parameters (noncontact laser interferometry)

Developed interfacial area ratio (Sdr)

$$Sdr = \frac{1}{A} \left[\iint_{A} \left(\sqrt{\left[1 + \left(\frac{\partial Z(x,y)}{\partial x} \right)^{2} + \left(\frac{\partial Z(x,y)}{\partial y} \right)^{2} \right]} - 1 \right) dxdy \right]$$

Surface area of the scale-limited surface A₁
Projected area A₀

Olympus*

 $Sdr = \{(A_1/A_0) - 1\} \times 100(\%)$

* https://www.olympus-ims.com/en/metrology/surface-roughness-measurement-portal/parameters/#!cms[focus]=cmsContent14708

Correlation Between Effective Conductivity and Surface Roughness

48 measurements (shown here)

Measurement time 2 min per sample (without repeatability study)

- Effective conductivity decreases (loss increases) with increasing roughness
- But there is no one-to-one realtion between Rz and loss
- Exponential curve: (a=4.65 MS/m, b=-0.2 1/um, c=12.8 MS/m) $R^2 = 0.49$

Correlation Between Effective Conductivity and Surface Roughness

Conclusions

- We have confirmed that increasing roughness leads to higher loss.
- However we have also shown that roughness-to-loss is not represented by a closed-form fomula.
- Sz or Sdr (from non-contact roughness measurement) give higher correlation to loss, than Rz (from contact measurement).
- It is recommened to measure foils before their aplictaion in mm-Wave circuit design.
- As further expected in view of the electromagnetic considerations, foil thickness is irrelevenat.

Acknowledgment

This work is performed within the EUREKA-Eurostars project 5G_Foil and co-

funded by the Polish National Centre for Reaserch and Development under

contract DWM/InnovativeSMEs/176/2023 and

InnovativeSMEs/4/90/5G_Foil/2023 and by the Luxembourg Ministry of Economy

under contract 2023-A127-X187.

THE GOVERNMENT OF THE GRAND DUCHY OF LUXEMBOURG

5G_Foil