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Outline:

1. Problems of Copper Foil Loss at Higher Frequencies.

3. QWED New Instruments for EM Characterisation of Copper Foils

  without the Need for Test Circuit Manufacturing.

4. iNEMI Project:

   Results for Representative Copper Foil Samples from 3 Vendors.

5. EUREKA-Eurostars Project: 

  Influence of Copper Foil Manufacturing  Parameters on Effective Conductivity.

6. Summary and Acknowledgements.

iNEMI “Copper Foils” Project: “Reliability & Loss Properties of Copper Foils for 5G Applications”

https://www.inemi.org/article_content.asp?adminkey=b5202baac78313e4914809b2f481b372&article=209

EUREKA-Eurostars “5G_Foil” Project: https://qwed.eu/5g_foil.html 

https://www.inemi.org/article_content.asp?adminkey=b5202baac78313e4914809b2f481b372&article=209
https://qwed.eu/5g_foil.html
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Why Copper Loss Becomes More problematic at Higher Frequencies

→ problems common for metallic surfaces (bulk or foil)
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Why Copper Loss Becomes More problematic at Higher Frequencies

→ problems specific to foils:

Photos & figures:

courtesy of CFL

from: Ed Kelly, IMPACT 2021
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Resonant Methods for Material Measurements
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→ In classical applications for measuring dielectric materials, we minimise losses from cavity walls, 

 to accurately capture the loss due to the dielectric filling.

→  To characterise copper foils, we minimise internal dielectric losses and apply a copper foils as a part

 of the cavity walls, with contribution to the overall loss of the resonator evaluated by rigorous EM modelling.
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Resonant Methods from QWED for Measuring Surface Resistance Rs 

(and Effective Conductivity eff of Copper Foils)

Dielectric Resonator: 

Sapphire (SaDR) or Ruby (RuDD)

Fabry-Perot Open Resonator

(modified to planar-concave design)

sample holder;

vacuum pump to be applied from below

Both RuDD (SaDR) and FPOR resonators allow measuring a copper foil by itself:

• no need to fabricate a test circuit!

• loss from the foil is separated from any dielectric loss,

• the two sides of foil can be measured separately,

• foils on laminates can also be measured.

eff

effective parameter,

lower than bulk copper, 

including the effects 

of inhomogeneity

(roughness, treatment)



7TUMA11

Ruby Dielectric Resonator for Measuring Conductive Layers

• It operates at nominal frequencies of 13 GHz and 21 GHz.

• Two identical metallic samples are required for measurements.

• The samples should have dimensions of at least 23 mm x 23 mm.

• The dedicated software calculates material parameters based on 

the measured data: resonance frequency and Q-factor (extracted 

through VNA).

A cylinder of high-permittivity dielectric (sapphire or ruby) forms the resonator.

It is mounted in a cylindrical cavity via a teflon ring.
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Ruby Dielectric Resonator (RuDD) - example measurement system

The picture above shows an example of a measurement kit which consists of a laptop (running a dedicated 

App), VNA and ruby resonator. 

Either VNA firmware or a dedicated App extract resonance frequency and Q-factor.

App provided with the resonator calculates material parameters.
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Sample preparation

Package with copper foils

received by QWED from iNEMI project partners

Foils cut and sorted into samples

 for RuDD measurements

iNEMI project partners provided representative sets of copper foils:

- 3 manufacturers, 

 - High- and Low-roughness foils,

 - 6 sheets of each foil,

 - to be measured on both “rough” and shiny” sides.
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Copper foils

Sample

„Rough” side of the sample „Shiny” side of the sample

Samples measured on 

the same side

Reading the resonant frequency 

and Q-factor from the VNA 

and entering it into dedicated 

software to calculate 

surface resistance and 

conductivity.
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Results

• Copper foils exhibit lower effective 

conductivity than bulk copper.

• Copper foils from 3 different 

manufacturers, of both High- and Low-

roughness, exhibit similar (within 10%) 

effective conductivities when measured 

on the “shiny” side 

(ca. 55.5 x 107 S/m).

• “Rough” side of high-roughness foils has 

lower conductivity (even by a factor 

of 2-3, depending on the manufacturer).

• For Low-roughness foils, the difference 

between the “shiny” and “rough” sides is 

less significant (with even an anomaly for 

one manufacturer).
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RuDD Results @ 13GHz and 21 GHz

At the higher frequency of 21 GHz:

• All measured effective conductivity values tend to be lower than at 13 GHz.

• Differences between the manufacturers become more significant.

• Copper foils from only one manufacturer, of one type (High-roughness, shiny side)  maintain 

effective conductivity at the level of 5 x 107 S/m. Other ones drop below 4.5 x 107 S/m.
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Fabry-Perot Open Resonator (FPOR) 

– adapted for measuring conductive films

Smooth side

Rough side

FPOR allows broadband and precise resonant measurements of electromagnetic properties of materials.

It is adapted to copper foil measurements by:

- replacing the classical double-concave mirrors with planar-concave design (the foil-under-test forms the planar mirror),

- a vacuum pump is applied for fixing the foil,

- dedicated software is developed (for converting measured resonant frequencies & Q-factors to foils’ effective 

conductivity.

sample size 

90mm x 90mm
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Broadband Copper Foil Measurements– FPOR & RuDD

FPOR

Ruby Resonator

• effective conductivity decreases with 

frequency → signal loss will increase

• differences between the two sides of 

copper must be taken into account
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Why Do We Need to Measure Both Sides of Copper

We model a 50 Ohm microstrip line.

QuickWaveTM by QWED is used to simulate field patterns and calculate transmission losses.

Higher field intensity below the strip → higher contribution of the bottom side of the strip to signal losses.
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Why Do We Need to Measure Both Sides of Copper

Predictions based on field patterns are confirmed by simulating a segment of the line, with a dual-side microstrip 

(conductivities to the bottom and upper side assigned independently in the model).

continuous lines: identical top-bottom sides

dashed lines: different top-bottom sides 

Note: 

differences in bottop-top conductivities are 

exaggerated, to capture differences in transmission 

loss along a short segment of the line.

PEC

 = 3E7 S/m

 = 3E5 S/m

top = 3E7 S/m  bottom = 3E5 S/m

top = 3E5 S/m  bottom = 3E7 S/m
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Results

Correlating effective conductivity to different surface roughness parameters

correlation with Sdr (averages) is stronger than with Sz (roughness “amplitudes”)

Sz, Sdr both obtained with noncontact laser interferometry  

correlation is weaker with Rz, Ra obtained with stylus profilometer 

R2 = 0.97
R2 = 0.77

foils of 35m and 70 m thickness, both sides of each foil
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Conclusions

1.  QWED has developed two resonator-based instruments for measuring effective conductivity of copper foils, based on:

- Dielectric Resonator (here: RuDD, dual-frequency: 13 GHz & 21 GHz)

- Fabry-Perot Open Resonator (in plano-concave topology, multi-mode, quasi-continuous measurement in 20..40 GHz band).

The measurements are quick & convenient, of the copper foils per se, as delivered by the manufacturer – no need to build a test circuit!

3. The initial testing was in the iNEMI project “Copper Foils”, where the partners have provided representative sets of copper foils:

 - 3 manufacturers, 

 - High- and Low-roughness foils (to be measured on both “rough” and shiny” sides)

 - 6 sheets of each foil type (to study sample reproducibility: averages and standard deviation calculated).

4. Further developments and testing continue in the EUREKA-Eurostars project “5G_Foil”.

5. QWED measurements show consistently  that, for higher frequencies (mmWave):

 - effective conductivity of all copper foils decreases (hence, electric loss increases) with frequency,

 - differences in loss due to different manufacturers and copper types increase,

 - differences of signal loss due to different conductivity of the two sides of copper need to be taken into account in circuit design,

 -

6. Foil roughness (preferably expressed as Sdr) is a major but not the only factor influencing the effective conductivity. The ongoing work 

concerns influences of grain size, oxide teratment, and other manufacturing factors.
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