AIOT seminar - adriano.panepinto@materianova.be

I4BAGS Workshop

Ion implantation potentials for smart materials. Applications in energy storage industries

A. Nasiri, F. Monteverde, C. Nouvellon

May 16th, 2024

1. Presentation of Materia Nova & Ionics SA

- 2. Thin Films Solid State Battery
- 3. Ion beam implantation technology
- 4. Applications in SS Battery

Presentation of Materia Nova R&D center & Ionics SA

1. Presentation of Materia Nova

75 Experts

Advanced Equipment

Strong network

200 Projects

THE TECHNOLOGICAL ACCELERATOR OF RESPONSIBLE INNOVATION IN MATERIALS AND PROCESSES

1. Presentation of Materia Nova

1. Presentation of Materia Nova

OUR TECHNOLOGIES

1. Presentation of Ionics SA

ionics surface technologies

1. Presentation of Ionics SA

Offered Technologies

Ion Implantation

- Improving metals wear and corrosion resistance
- Reel-to-reel plating
- Barrel plating via partners
- Majority of business in Automotive sector & household appliances

• Functional coatings of metals / ceramics / polymers

- Countless coating types, e.g. metallic alloys, Diamond-like C, Nitrides, Carbides, etc.
- Coating of the powders, beads and 3D objects

- Our key technology with 38 patents
- Improving corrosion resistance, hardness, COF & fine-tuning optical properties
- Modification of metals, polymers, elastomers, etc.
- Processing of flat surfaces, reels, powders and 3D objects

1. Presentation of Ionics SA - Facilities

Batch/Lab-scale plasma system

- Equipped with ion implantation and/or PVD/PECVD
- Flat samples up to 40x40cm and powder up to 100cm³

Semi-industrial ion implanters:

- Load-and-Lock system for flat samples up to 1,6 x 1,6m
- Continuous Roll-to-Roll for strips

2. Thin Film Solid State Battery

3. Ion beam Implantation technology - Principle

3. Ion beam Implantation technology - Principle

3. Ion beam Implantation technology – Ion depth profile

Multicharged ion beam

States	+1	+2	+3	+4	+5
He	89 %	11%			
N	57%	32%	8%	2%	1%
0	57%	32%	8%	2%	1%
Ar	65%	25%	7%	3%	

Example : N implanted Aluminium

SRIM-2013 software simulation Stopping & Range of Ion in Matter

Energy = 35keV

Avg depth = 82nm Max depth = 150nm

Avg depth = 114nm Max depth = 250nm

3. Ion beam Implantation technology - Properties

Process

- Simple process ⇒ Industrialization
- Any solid materials: metals polymers glasses...
- Any shapes: flat powders small 3D objects, wire...
- No adherence issues
- Environmental-friendly process

Benefits

- Surface hardening
- Tribological properties : friction coefficient reduction, wear resistance...
- Improved corrosion resistance and high temperature oxidation resistance
- Wettability modification (hydrophobic hydrophilic)
- Adhesion improvement at the interface between 2 materials
- Advanced products with optical, electronic, catalytic properties...

Ion implanted

Reference

500

Polymer conductivity

Effect of Ion beam Implantation on the electrical properties of graphite thin films

Thin graphite film produced by PVD plasma technology

- Thickness = 500nm
- Substrate : 4inch quartz wafer

Ion Beam Implantation parameters:

- Gas : He (small size), Ar (big size), N₂ (reactive gas)
- Ion energy : 10 to 35 keV
- Ion dose : $5^{E}15$ to $3^{E}17$ ions/cm²
- Sample surface temperature : 100 to 300°C

Electrical characterization by 4-probes method

Effect of Ion beam Implantation on the electrical properties of graphite thin films

I4BAGS Public Workshop – May 16th, 2024

Effect of Ion beam Implantation on the electrical properties of graphite thin films

Sample heating controlled using ion current density

- Very high impact of the temperature during ion implantation
- Maximum decrease of 800X compared

to reference

Microstructure characterization

Cristallinity (X-Ray diffraction)

Resistance decrease not due to crystal structure modification after ion implantation

Microstructure (AFM)

Resistivity = 1,2E5 Ω /sq

Roughness Ra = 1,6nm

Roughness Ra = 20,0nm

Conclusions:

- Ion implantation is a process that can successfully modify the electrical properties of carbon coatings
- The driving parameters are mainly the ion dose and the process temperature
- Microstructural characterization doesn't completely explain the involved mechanisms

Perspectives:

- Better understanding of the mechanisms by further characterizations
- Influence of thermal annealing before or after implantation
- Evaluation of the ion implantation interest on the modification of the battery anode (LiCoO2) and solid-state electrolyte (LIPON)

Thank you for your attention

Exercice 2021 - project 9555 Convention région wallonne n° 21100149

